Pattern recognition analysis of proton nuclear magnetic resonance spectra of extracts of intestinal epithelial cells under oxidative stress.

نویسندگان

  • Keiji Nakata
  • Norio Sato
  • Keiko Hirakawa
  • Takayuki Asakura
  • Takao Suzuki
  • Ran Zhu
  • Takeshi Asano
  • Kaoru Koike
  • Youkichi Ohno
  • Hiroyuki Yokota
چکیده

BACKGROUND Mesenteric ischemia-reperfusion induces gut mucosal damage. Intestinal mucosal wounds are repaired by epithelial restitution. Although many different molecular mechanisms have been shown to affect cell metabolism under oxidative conditions, these molecular mechanisms and metabolic phenotypes are not well understood. Nuclear magnetic resonance (NMR) spectroscopic data can be used to study metabolic phenotypes in biological systems. Pattern recognition with multivariate analysis is one chemometric technique. The purpose of this study was to visualize, using a chemometric technique to interpret NMR data, different degrees of oxidant injury in rat small intestine (IEC-6) cells exposed to H2O2. METHODS Oxidant stress was induced by H2O2 in IEC-6 cells. Cell restitution and viability were assessed at different H2O2 concentrations and time points. Cells were harvested for pattern recognition analysis of (1)H-NMR data. RESULTS Cell viability and restitution were significantly suppressed by H2O2 in a dose-dependent manner compared with control. Each class was clearly separated into clusters by partial least squares discriminant analysis, and class variance was greater than 90% from 2 factors. CONCLUSION Pattern recognition of NMR spectral data using a chemometric technique clearly visualized the differences of oxidant injury in IEC-6 cells under oxidant stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton nuclear magnetic resonance and pattern recognition analysis of liver extracts from rats under different anesthetics

BACKGROUND Although general anesthesia is widely used in the surgical arena, the mechanisms by which general anesthetics act remain unclear. We previously described alterations in gene expression ratios in hepatic tissue taken from rats treated with anesthetics. Consequently, it is considered that anesthetics influence liver metabolism. Thus, the goal of this study was to use pattern recognitio...

متن کامل

Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant ch...

متن کامل

Pattern Recognition Analysis of Proton Nuclear Magnetic Resonance Spectra of Brain Tissue Extracts from Rats Anesthetized with Propofol or Isoflurane

BACKGROUND General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a ...

متن کامل

A 1H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters

The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease. Thus, to obtain a better underst...

متن کامل

Classification of brain tumor extracts by high resolution ¹H MRS using partial least squares discriminant analysis.

High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Nippon Medical School = Nippon Ika Daigaku zasshi

دوره 81 4  شماره 

صفحات  -

تاریخ انتشار 2014